Ion balance, uptake, and transport processes in n(2)-fixing and nitrate- and urea-dependent soybean plants.

نویسندگان

  • D W Israel
  • W A Jackson
چکیده

The objective of this study was to examine the influence of N(2) fixation and NO(3) (-)-N and urea-N assimilation on ion balance, uptake, and transport processes in soybean (Glycine max L. Merr.).Inoculated plants were grown in Perlite supplied daily with nutrient solutions which contained zero-N, 10 and 20 millimolar NO(3) (-)-N, and 10 and 20 millimolar urea-N, and they were sampled 41, 76, and 151 days after transplanting. Total uptake of inorganic cations and anions was determined by analysis of tissue for K(+), Ca(2+), Mg(2+), Na(+), total N from NO(3) (-), total S, H(2)PO(4) (-), and Cl(-). Differences in total inorganic cations (C) and inorganic anions (A) in plant tissue were used to estimate total carboxylate content.Internal OH(-) generation resulting from excess cation uptake (net H(+) excretion) by the roots accounted for more than 89% of the carboxylate accumulation in N(2)- and urea-fed plants, while OH(-) generation resulting from SO(4) (2-) reduction accounted for less than 11%. Shoots contained over 89% of the total plant carboxylate content. Malate balanced about 75% of the excess inorganic cationic charge of the xylem sap; allantoate and aspartate balanced most of the remaining charge. These results indicate that carboxylates (primarily malate) are synthesized in roots of N(2)- and urea-fed plants and transported to the shoots in the xylem to maintain charge balance. The high malate concentration resulted in the C/N weight ratio of xylem sap from N(2)-fed plants being >2.0, even though 83% of the N was transported as allantoin and allantoic acid which have a C/N ratio of 1.0. The data emphasize that C and N content of N compounds should not be the sole basis for calculating the C/N weight ratio of xylem sap.The C-to-A uptake ratio for plants supplied 10 millimolar NO(3) (-) ranged from 1.24 to 1.57 during development, indicating that internal OH(-) was generated both by excess cation uptake and by NO(3) (-) and SO(4) (2-) reduction. The C-to-A uptake ratio for 20 millimolar NO(3) (-) -fed plants ranged from 0.86 to 0.96 during development, indicating a small net OH(-) efflux from the roots for support of excess anion uptake. On a seasonal basis, only 15% of the OH(-) generated during NO(3) (-) and SO(4) (2-) reduction was associated with OH(-) efflux (excess anion uptake), while 85% was associated with carboxylate accumulation. The malate concentration in xylem sap from plants supplied 20 millimolar NO(3) (-) was only one-third that of N(2)- and urea-fed plants; however, it did balance 75% of the excess inorganic cationic charge. Potassium, recycling to accommodate excess anion uptake by 20 millimolar NO(3)-fed plants, was calculated to involve at most 17% of the total K(+) absorbed during the 41- to 76-day growth interval.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of bacterial root symbiosis and urea as source of nitrogen on performance of soybean plants grown hydroponically for Bioregenerative Life Support Systems (BLSSs)

Soybean is traditionally grown in soil, where root symbiosis with Bradyrhizobium japonicum can supply nitrogen (N), by means of bacterial fixation of atmospheric N2. Nitrogen fertilizers inhibit N-fixing bacteria. However, urea is profitably used in soybean cultivation in soil, where urease enzymes of telluric microbes catalyze the hydrolysis to ammonium, which has a lighter inhibitory effect c...

متن کامل

Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants.

Urea is the major nitrogen (N) form supplied as fertilizer in agriculture, but it is also an important N metabolite in plants. Urea transport and assimilation were investigated in Arabidopsis (Arabidopsis thaliana). Uptake studies using (15)N-labeled urea demonstrated the capacity of Arabidopsis to absorb urea and that the urea uptake was regulated by the initial N status of the plants. Urea up...

متن کامل

Effect of AtNRT2.1 transgene on HATS nitrate uptake in transgenic Nicotiana plumbaginifolia

To investigate the impact of overexpression of AtNRT2.1 transgene from Arabidopsis on nitrate uptake rate and to understand the regulation of endogenous HATS by nitrate and glutamine amino acid (Gln) in tobacco plants, wild-type and transgenic (F line) plants grown on soil for 4 weeks were transferred to hydroponic culture in a controlled-environment with a 16/8h L:D photoperiod at 24? C/20...

متن کامل

تأثیر تغذیه نیکل و منبع نیتروژن بر رشد و عملکرد کاهو در محیط آبکشت

Nickel (Ni) is the most recently discovered essential element for higher plants. But there is limited information about the effect of this element on yield and nitrogen (N) metabolism of different plants. In this research, the interaction of Ni supplement and N source was studied on nitrate accumulation and growth of lettuce (Lactuca sativa L. cv. Baker) in solution culture. In a greenhouse exp...

متن کامل

An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx.

BACKGROUND AND AIMS In spite of major breakthroughs in the last three decades in the identification of root nitrate uptake transporters in plants and the associated regulation of nitrate transport activities, a simplified and operational modelling approach for nitrate uptake is still lacking. This is due mainly to the difficulty in linking the various regulations of nitrate transport that act a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 69 1  شماره 

صفحات  -

تاریخ انتشار 1982